欢迎访问北京中科格励微科技有限公司!

电机控制
- 分类:行业应用
- 发布时间:2020-05-28 00:00:00
- 访问量:0
在电机系统的开发中,技术人员往往需要对隔离进行着重考量和设计。一是为了保护用户免受有害电压影响,二是实现对系统中的敏感器件和设备的保护。另外,在糟糕的环境中,还要求系统抵御高压瞬变,防止数据遭受干扰,同时考虑长时间的高压环境对隔离器的寿命的影响。因此,电机控制系统设计中,隔离对技术人员的挑战是巨大的。
电机控制系统可能包含各种各样的隔离器件,例如:驱动电路中的隔离式栅极驱动器;检测电路中的隔离式ADC、放大器和传感器;以及通信电路中的隔离式SPI、RS-485、标准数字隔离器。无论是出于安全原因,还是为了优化性能,都要求精心选择这些器件。
长时间以来,技术人员都习惯于采用光耦器件来解决隔离问题。但是随着技术的发展,基于微型变压器的电磁耦合隔离器提供了一种可行且在很多时候更优越的替代方案;本文将讨论这两种隔离解决方案,为技术人员在电机系统的隔离设计方面提供建议。
光耦利用光作为主要传输方法,如图1所示。发送侧包括一个LED,高电平信号开启LED,低电平信号关闭LED。接收侧利用光电检测器将接收到的光信号转换回电信号。隔离由LED与光电检测器之间的塑封材料提供,但也可利用额外的隔离层(通常基于聚合物)予以增强。
图1
光耦的最大缺点之一是:LED老化,会使传输特性漂移;设计人员必须考虑这一额外问题。LED老化导致时序性能随着时间和温度而漂移。因此,信号传输和上升/下降时间会受影响,使设计复杂化。另外,光耦的性能扩展也是受限的。为了提高数据速率,必须克服光耦固有的寄生电容问题,该问题会导致功耗升高。寄生电容还会提供耦合机制,导致基于光耦的隔离器件的CMTI(共模瞬变抗扰度)性能劣化。
基于微型变压器的磁隔离器基于标准CMOS技术,采用电磁耦合传输原理,隔离层由聚酰亚胺或二氧化硅构成,如图2所示。低电平电流以脉冲方式通过线圈传输,产生一个磁场,磁场穿过隔离栅,在隔离栅另一侧的第二线圈中感生一个电流。由于采用标准CMOS结构,其在功耗和速度方面具有明显优势,而且不存在光耦合器相关的寿命偏差问题。此外,基于变压器的隔离器的CMTI性能优于基于光耦合器的隔离器。
图2
基于变压器的磁隔离器还允许使用常规的信号处理模块(防止传输杂散输入)和高级传输编解码机制。这样就可以实现双向数据传输,使用不同编码方案来优化功耗与传输速率的 关系,以及将重要信号更快速、更一致地传输到隔离栅另一端。
根据应用的性能和功率水平,以及具体的控制和隔离方案,电机驱动有各种各样的系统设计。图3所示为逆变器或低端电机驱动器常用的隔离通信框图。在该系统中,控制器电位与功率级相同,通信接口被隔离,因为这通常是一个较低速度且较简单的接口。在此类系统中,功率逆变器可能具有低端栅极驱动器,这些驱动器不需要隔离,因为其与电机控制模块共享同一接地。高端驱动器可以隔离,但也可以使用电平转换之类的技术,尤其是当功率逆变器电压不是太高时。在此框图中,电机控制器不使用隔离,直接连到逆变器反馈。当功率水平较高时,使用这种架构会有局限性。开关信号在电机上产生的额外噪声可能会淹没用来监测电机电流的反馈信号,进而可能引起电机失控。
图3 隔离通信电机控制框图
对于较高性能驱动,例如工业电机和火车牵引电机中使用的大型多相驱动,将会需要隔离控制和通信,如图4所示。在此系统框图中,出于抗噪和提高通信速度的原因,控制和通信均位于隔离栅的安全侧。因为电机控制模块位于隔离栅的安全侧,所以全部栅极驱动器都需要隔离。特定隔离电压和安全要求由具体架构和隔离栅位置决定。在框图中,逆变器反馈用来帮助控制电机驱动,是电机控制最重要的方面之一。如图所示,逆变器反馈连接到三相交流电机的两相中的电流测量节点iV和iW。在隔离控制和通信系统图中,逆变器反馈必须跨隔离栅连接,故而这里也需要隔离。在许多高功率电机应用中,架构会要求对三相电机的高电压进行增强隔离,防止用户接触到高电压。
图4 隔离控制和通信电机控制框图
另外,在大型电机应用中,当电机控制开关电路在桥电压中产生步进变化时,隔离栅上的共模电压变化可能会产生噪声。隔离器耐受此高压摆率电压瞬变且隔离器输出不受干扰的能力,便是共模瞬变抗扰度(CMTI)。光耦合器的CMTI可能不是很高,因为其接收元件非常敏感,易受容性耦合效应影响。光耦合器的容性耦合是一种单端结构,信号和噪声只有一条路径跨越隔离栅。这就要求信号频率必须远高于预期的噪声频率,以便隔离栅电容对信号提供低阻抗,而对噪声提供高阻抗。当电机控制信号频率较低时(通常低于16 kHz),共模瞬变的高频成分会高于信号频率,其幅度可能足以扰乱光耦合器输出。
图5 变压器耦合数字隔离器
图5所示的基于微型变压器的数字隔离器,变压器有一个差分输入结构,其为输入信 号和噪声提供了不同的传输路径,因此必然具有更大的共模噪声抗扰度,而且不存在光耦合器要求信号频率高于噪声频率的限制。改进的电气噪声抗扰度使得器件能在高噪声环境下可靠地工作。
图6
图6显示了电机控制开关期间共模瞬变的高桥电压和快速dV/dt的开关噪声,数字隔离器必须能抵抗这种干扰。示波器波形显示,对于开关键控架构的变压器耦合数字隔离器,要扰乱数据,从GND2到GND1的快速共模瞬变(CMT)须高于150 kV/μs,而且隔离器输出受扰乱的时间非常之短,只有区区3 ns。实现超高CMTI的关键在于发送器必须不断产生差分载波信号,并且接收器必须具有很高的输入共模变化抗扰度。
随着人们更加关注系统性能、效率和安全,电机控制架构师在设计稳健系统时面临着日益复杂的挑战。基于光耦合器的栅极驱动器是传统选择,但基于变压器的解决方案不仅在功耗、速度、时间稳定性上更具优势,其在系统性能和安全方面也有明显优势。这使得设计人员可以在防止上桥和下桥开关同时接通的同时,有把握地缩短死区时间,改善系统性能。此外,它还支持对系统命令和错误作出更快速的响应,这同样能增强系统可靠性并提高安全性。鉴于这些优势,基于微型变压器的电磁隔离方案理应成为技术人员的理想选择。
扫二维码用手机看

行业应用
每一份客户的期待都被成功交付,
格励微与您一路同行。
行业应用

7*24小时售后支持

研究开发

行业应用方案

资质认证
联系我们
客服热线:010-62614508
客服邮箱:sales@zk-glw.com
地址:北京市海淀区中关村南一条甲1号2号楼10层1001室

版权所有:北京中科格励微科技有限公司 京ICP备17074908号-1 网站建设:中企动力 北京